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Abstract

A two-dimensional unsteady analysis of an elastic circular cylindrical shell that enters a thin layer of an ideal

incompressible liquid is considered. The cylinder initially touches the liquid free surface at a single point and then

penetrates the liquid layer at a constant vertical velocity. The problem is coupled because the liquid flow, the shape of

the elastic shell and the geometry of the contact region between the body and the liquid must be determined

simultaneously. The flow region is subdivided into four complementary regions that exhibit different properties: the

region beneath the entering body surface, the jet root, the spray jet, and the outer region. A complete solution is

obtained by matching the solutions within these four subdomains. The structural analysis is based on the normal-mode

method. Strain-time histories of the inner surface of the cylinder are of particular interest. In the case of a very flexible

shell three distinct regimes of the impact process were found. For a high impact velocity the lower part of the shell

flattens and the shell does not enter the water. For a moderate impact velocity the shell reaches the bottom and an effect

of ‘‘fluid capture’’ may occur. For a low impact velocity the shell penetrates the liquid, but the size of the contact region

decreases before the shell reaches the bottom. This behaviour corresponds to exit or ‘‘reflection’’ of the shell from the

water layer.

r 2008 Elsevier Ltd. All rights reserved.
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1. Introduction

Impact of an elastic cylindrical shell onto water surface became an important practical problem in the 1930s, when

hydroplanes were first built. As a hydroplane touches a water surface, its body (approximately a cylindrical shell) or skis

(also approximately cylindrical shells) are subject to very high hydrodynamic loads, which need to be properly

understood. Fluid–structure interactions are also of considerable practical importance for other engineering fields, e.g.,

bottom slamming on a bulbous ship bow.

Pioneering works on the slamming problem were done by Von Kármán (1929) and Wagner (1932). Both of these

pioneering studies assume (infinitely) deep water and small deadrise angles, which means that the impacting body

surface is nearly tangential to the water surface. This assumption allowed Wagner to use the so-called ‘‘flat disk

approximation’’, in which both the dynamic and kinematic free-surface boundary conditions are applied on the
e front matter r 2008 Elsevier Ltd. All rights reserved.
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undisturbed free surface. Wagner introduced conditions (nowadays called ‘‘Wagner conditions’’) at the intersection

points between a body and the liquid free surface, which require that the free-surface elevation is equal to the body

position at this point. In the Wagner theory the flow velocity is square root singular at the intersection points. Wagner’ s

approach was adopted in numerous studies of water impact on both rigid and elastic bodies and continue to be actual

until now, see e.g., Khabakhpasheva and Korobkin (1997) or Korobkin et al. (2006). A review of these studies may be

found in, e.g., Faltinsen et al. (2004) and in Korobkin and Khabakhpasheva (2006).

Another approach was developed by Korobkin (1995) for the case when the body penetration depth is comparable to

thickness of the liquid layer. This study considered the impact of two rigid bodies, one of which is covered by a thin

liquid layer. These flows are characterized by jets of thickness comparable to the liquid depth but with their roots along

the perimeter of the contact region. Korobkin decomposed the liquid layer into four distinct regions and used a

matched asymptotic analysis. Korobkin’s method is developed further here for a flexible elastic shell.

Howison et al. (2002) developed a theory of slamming for finite water depth. In this theory, Wagner’s approach and

Korobkin’s approach represent limiting cases which correspond to (infinitely) deep water and shallow water,

respectively.

Numerical investigations of water entry and exit of a circular cylinder have been reported by many authors.

Greenhow (1988) used a boundary element method based on Cauchy’s theorem, and Zhu et al. (2005) used a CIP

method. These studies assume rigid bodies. Arai and Miyauchi (1998) and Sun and Faltinsen (2006) investigated

two-dimensional hydroelastic fluid–structure interactions during water entry of a cylindrical shell, using a CFD method

for the flow field and a modal analysis for the shell structure. Sun and Faltinsen’s (2006) coupled fluid–structure

analysis considers finite water depth and includes a comparison of both Wagner’s and Karman’s approaches with the

CFD results. Ionina and Korobkin (1999) used the modal analysis to study cylindrical shell impact onto deep water

with Wagner’s approach for the liquid flow.

Impact of an elastic shell on a thin liquid layer is considered in this study. The modal approach is used for the

structural analysis, and Korobkin’s approach is adopted for the hydrodynamic analysis. Accordingly, the flow region is

decomposed into four complementary subdomains, within each of which a distinct flow analysis is performed. A

uniformly valid asymptotic solution of the fluid–structure interaction problem is then obtained via matching of the

solutions within the four complementary flow regions. The elastic deformation of the shell are taken into account via

coupling of a structural analysis and a hydrodynamic analysis.

The coupled problem is formulated in Section 2. General assumptions, decomposition of the flow region and scaling

of the liquid flow problem are also considered in this section. The mathematical statement of the structural problem is

given in Section 3. The hydrodynamic analysis and matching of the solutions in the complementary subregions are

considered in Sections 4 and 5. The coupled hydroelasticity problem is analysed using the normal mode method in

Section 6. Numerical results are reported and discussed in Section 7. Finally, concluding remarks are given in Section 8.
2. Problem formulation and general assumptions

A two-dimensional analysis of the impact of an elastic circular shell, of radius R0, on a thin layer �h0oy0o0 of water,

initially at rest, is considered here; see Fig. 1. At time t0 ¼ 0, the cylinder touches the free surface y0 ¼ 0 at a point,

chosen as the origin of a Cartesian system of coordinates x0Oy0, and hits the liquid layer with vertical velocity V.

The velocity and shape of the cylinder for t040 vary due to interactions between the elastic cylinder and the liquid. The

location of the contact points between the free surface and the elastic body are not known beforehand, and must be

determined together with the liquid flow and the shell deformation.
Fig. 1. Definition sketch for the impact of a shell on a thin layer of water.
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Fig. 2. Definition sketch for the decomposition of the flow region.
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The deformations of the elastic cylinder, the distribution of bending stresses, and the location of the contact points

are determined under the following assumptions:
(i)
 the liquid is ideal and incompressible;
(ii)
 the flow in the liquid layer is two-dimensional and symmetrical with respect to the y0-axis;
(iii)
 the liquid flow in the region beneath the entering body is represented using the shallow water model;
(iv)
 the shell thickness is constant and small;
(v)
 external mass forces and surface tension have negligible effects;
(vi)
 the wetted area of the cylinder is a monotonically increasing function of time t0.
The problem is formulated in nondimensional form, using L ¼ h0 and T ¼ h0=V as length and time scales, V as

velocity scale for the liquid flow, and rV2 as the hydrodynamic pressure scale; here, r is the liquid density.

The flow is analysed using the method of matched asymptotic expansions; see Korobkin (1995). Specifically, the flow

field is divided into four regions, as depicted in Fig. 2. Region I is the region beneath the entering body; region II is the

jet root; region III is the spray jet; and region IV is the outer region.

It is important to note that the dimension of region I is not fixed during the impact process, but depends on the size of

a contact region. To connect the liquid flow in the four regions, we use conservation laws in region II. The inner

geometry of region II is chosen for the case when the dimension of a contact region grows and a jet arises.

The velocity of the fluid particles in the jet root (region II) is tangential to the body surface. In a jet region (region III)

the pressure is near the atmospheric value and, hence, liquid particles in the jet move inertially. The flow inside the

region was analysed by Howison et al. (1991) within the Wagner theory. It was shown that the jet motion is

approximately one-dimensional and depends on that in the jet root. The influence of the jet motion on the flow inside

the jet root may be neglected.

Here, the flows in regions I and II are analysed, and matched to each other and to the state of rest in region IV.

Deflection of the shell is taken into account during the analysis of the liquid flow.
3. Elastic-shell vibrations

The elastic-shell vibrations satisfy the equations and boundary conditions

€wþ aðw� vyÞ þ bðvyyy þ wyyyyÞ ¼ gp0ðy; tÞ ð�poyopÞ, (1)

€vþ aðwy � vyyÞ � bðvyy þ wyyyÞ ¼ 0 ð�poyopÞ, (2)

vðy; 0Þ ¼ wðy; 0Þ ¼ 0 ð�poyopÞ, (3)

vtðy; 0Þ ¼ � sin y; wtðy; 0Þ ¼ � cos y ð�poyopÞ, (4)

where

a ¼
E

r0R2V2ð1� n2Þ
; b ¼

Eh2
0

12r0R4V2h0 2ð1� n2Þ
; g ¼

rh0

r0h0
; R ¼

R0

h0
,

see, e.g., Grigoliuk and Gorshkov (1974) or Ionina and Korobkin (1999). Here, an overdot denotes a derivative with

respect to time, w and v stand for the radial and angular components of the absolute displacements of the shell elements,

respectively, r and y are polar coordinates, y ¼ 0 corresponds to the lowest point of the body, h0 is the thickness of the

shell, r0 is the density of the shell material, E is the elasticity modulus, n is Poisson’s ratio, pðx; y; tÞ is the hydrodynamic
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pressure, and p0ðy; tÞ is the external (hydrodynamic) load acting on the elastic shell. Within the contact region, jxjocðtÞ

and jyjoycðtÞ, one has p0ðy; tÞ ¼ pðxðy; tÞ; yðy; tÞ; tÞ, where xðy; tÞ and yðy; tÞ are the horizontal and vertical coordinates of

the point on the elastic cylinder, xð�ycðtÞ; tÞ ¼ �cðtÞ. During the initial stage of the impact, the approximate formulae

x � Ry, ycðtÞ � cðtÞ=R may be used. The initial conditions, Eqs. (3) and (4) assume that the shell is undeformed before

the impact and moves vertically.

Eqs. (1)–(4) correspond to the structural part of the problem. The coupled structural and hydrodynamic problem

requires that the size of the contact region and the hydrodynamic pressure distribution along the wetted region be

determined simultaneously.
4. Liquid flow in the region I, beneath the shell

Estimates of the liquid flow parameters and physical considerations indicate that, within region I ðjxjocðtÞ,

�1oyof ðx; tÞ, where f ðx; tÞ is the shape of the entering body), the pressure p and the horizontal component u of the

velocity are approximately independent of y [see Korobkin (1995, pp. 47–50) for details].

The nondimensional equations for the liquid velocity ~u ¼ ðu1; u2Þ of the liquid motion are

qu1

qt
þ u1

qu1

qx
¼ �

qp

qx
, (5)

qu1

qx
þ

qu2

qy
¼ 0 ðjxjocðtÞ; �1oyof ðx; tÞÞ, (6)

u2 ¼ f xðx; tÞu1 þ f tðx; tÞ ðy ¼ f ðx; tÞ; jxjocðtÞÞ, (7)

u2 ¼ 0 ðy ¼ �1; jxjocðtÞÞ. (8)

Here, u1 ¼ u1ðx; tÞ, p ¼ pðx; tÞ, u2 ¼ u2ðx; y; tÞ. Integration of system (6)–(8) yields

u1ðx; tÞ ¼
�
R x

0 f tðx; tÞdx
f ðx; tÞ þ 1

, (9)

for the symmetrical case. The symbol u for horizontal component of the liquid velocity will be used below instead of u1.

The pressure distribution over the contact line can be determined by integrating Eq. (5) and using Eq. (9) and the

boundary condition pðcðtÞ; tÞ ¼ pcðtÞ, where pc is not known in advance. Integration yields

pðx; tÞ ¼ pcðtÞ þ
1

2
½u2ðc; tÞ � u2ðx; tÞ� þ

Z c

x

utðx; tÞdx. (10)

The functions f ðx; tÞ and cðtÞ, which define the shape of the body and the size of the contact region, are unknown in

Eqs. (9) and (10).
5. Liquid flow in region II and matching conditions

The liquid flow in region II is analysed as in Korobkin (1995). Within this approach, the velocity of the

body is neglected and the body surface is taken as a horizontal plate; see Fig. 3. The flow is assumed to be approximately
Fig. 3. Definition sketch for the flow in the jet root region.
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quasi-stationary. The jet of thickness 1 moves to the left with velocity dc=dt. A part of the jet mass continues to move left

between the two rigid horizontal plates, separated by the distance Hc ¼ f ðc; tÞ þ 1. At left-hand side infinity, the pressure

is pcðtÞ and the horizontal velocity is u0 ¼ dc=dt� uðc; tÞ. Another part of the jet is deflected and forms a spray jet of

thickness hj . The dynamic condition at the free surface requires that the magnitude of the flow velocity at the free surface be

constant. The jet horizontal velocity at infinity is then dc=dt; see Tuck and Dixon (1989). Here, matching of the flow

parameters in regions I and II was used. A detailed analysis of the flow can be obtained from conservation laws:

mass-conservation law:

_c ¼ hj _cþHcu0; (11)

Bernoulli’s equation (energy-conservation law):

ð_cÞ2 ¼ 2pc þ u20; (12)

momentum-conservation law:

ðpc þ u20ÞHc ¼ ð_cÞ
2
ð1þ hjÞ. (13)

The three Eqs. (11)–(13) determine the three unknown functions hjðtÞ, _cðtÞ, pcðtÞ, as follows:

hjðtÞ ¼ ð
ffiffiffiffiffiffiffi
Hc

p
� 1Þ2, (14)

_cðtÞ ¼
�
R c

0 f tðx; tÞdx

2ðHc �
ffiffiffiffiffiffiffi
Hc

p
Þ
; pcðtÞ ¼

ð
R c

0 f tðx; tÞdxÞ
2

2H2
cð

ffiffiffiffiffiffiffi
Hc

p
� 1Þ

. (15)

It should be emphasized that the exact liquid flow in region II is not considered. The conservation laws in this region are only

used to match the flow in the region beneath the body and the state of rest in the outer region, and to determine the turnover

point c. The region ð�c; cÞ is then considered as the effective contact region. Thus, Eqs. (14) and (15) define the flow in region

I, the size of the contact region, and the pressure distribution along the contact line by virtue of Eqs. (9) and (10).
6. Normal mode method

The coupled hydroelasticity problem is solved here using the normal mode method. This approach is very convenient

for description of elastic deformations of the body and was used before in numerous studies, e.g., Ionina and Korobkin

(1999), Korobkin and Khabakhpasheva (2006) or Korobkin et al. (2008). If a structure is complex or its displacement

and large, finite element method can be more appropriate for the modelling of the structure dynamics, see e.g.,

Korobkin et al. (2006) or Lu et al. (2000).

Within the normal mode method, the solution of the boundary-value problem, Eqs. (1)–(4), is sought in the form

pðy; 0; tÞ ¼
p0
2
þ
X1
n¼1

pnðtÞ cos ny,

wðy; tÞ ¼
a0

2
þ
X1
n¼1

anðtÞ cos ny; vðy; tÞ ¼
X1
n¼1

bnðtÞ sin ny, (16)

where �poyop, and the principal coordinates anðtÞ and bnðtÞ define the elastic deformation of the shell. During the

initial stage of the impact, the approximate formula y ¼ x=R may be used. The shape of the shell is given by

f ðx; tÞ ¼ R�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 � x2

p
þ

a0

2
þ
X1
n¼1

anðtÞ cos
nx

R
. (17)

Eq. (9) yields

uðx; tÞ ¼
Uðx; _~aðtÞÞ

Hðx;~aðtÞÞ
, (18)

where

Uðx; _~aðtÞÞ ¼ �
_a0x

2
� R

X1
n¼1

_anðtÞ

n
sin

nx

R
; Hðx;~aðtÞÞ ¼ f ðx; tÞ þ 1.
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Eqs. (14) and (15) then take the form

_c ¼
Uðc; _~aðtÞÞ

2ðHc �
ffiffiffiffiffiffiffi
Hc

p
Þ
; pcðtÞ ¼

U2ðc; _~aðtÞÞ

2H2
cð

ffiffiffiffiffiffiffi
Hc

p
� 1Þ

; Hc ¼ Hðc;~aðtÞÞ.

The coefficients pmðtÞ of the first expansion in Eq. (16) can be determined via multiplication of Eq. (10) by cosðnx=RÞ

and integration with respect to x within the range �cpxpc. After integration, pmðtÞ is obtained in the form

pmðtÞ ¼ Kmðt; cðtÞ;~aðtÞ; _~aðtÞÞ �
X1
n¼0

Snmðt; cðtÞ;~aðtÞÞ €anðtÞ, (19)

where

Knðt; cðtÞ;~aðtÞ; _~aðtÞÞ ¼
2

pR

Z c

0

Kðt; cðtÞ; x;~aðtÞ; _~aðtÞÞ cos
nx

R
dx; n ¼ 0; 1; 2; . . . , (20)

Kðt; cðtÞ; x;~aðtÞ; _~aðtÞÞ ¼
ðUðc; _~aÞÞ2

2H2
cð

ffiffiffiffiffiffiffi
Hc

p
� 1Þ
þ
1

2

ðUðc; _~aÞÞ2

ðHðc; t;~aÞÞ2
�
ðUðx; _~aÞÞ2

ðHðx; t;~aÞÞ2

" #

�

Z c

x

Uðx; _~aÞ
_a0
2
þ
P1

n¼1 _an cos
nx
R

� �
dx

ðHðx;~aÞÞ2
, (21)

S00ðt; cðtÞ;~aðtÞÞ ¼
2

pR

Z c

0

x2

Hðx;~aÞ
dx,

S0mðt; cðtÞ;~aðtÞÞ ¼ Sm0ðt; cðtÞ;~aðtÞÞ ¼
2

pm

Z c

0

x sin
mx
R

Hðx;~aÞ
dx,

Snmðt; cðtÞ;~aðtÞÞ ¼
2R

pnm

Z c

0

sin
nx
R

sin
mx
R

Hðx;~aÞ
dx; n;m ¼ 1; 2; 3; . . . . (22)

The system of equations (1) and (2) can be expanded to obtain expressions for the principal coordinates anðtÞ and

bnðtÞ, n ¼ 0; 1; 2; . . .

€an þ anðaþ bn4Þ � bnðanþ bn3Þ � gpn ¼ 0, (23)

€bn � anðanþ bn3Þ þ bnðbn2 þ an2Þ ¼ 0, (24)

Eq. (19) can be used and combined with the second derivatives €anðtÞ. Following Ionina and Korobkin (1999), an infinite

system of ordinary differential equations is obtained for the principal coordinates ~a ¼ ða0; a1; a2; . . . Þ
T, ~b ¼

ðb0; b1; b2; . . . Þ
T and auxiliary vector-functions ~q ¼ ðq0; q1; q2; . . . Þ

T, ~r ¼ ðr0; r1; r2; . . . Þ
T:

_~q ¼ ðI þ gSÞ�1ðg~Kðt; cðtÞ; x;~aðtÞ; _~aðtÞÞ �D1~aþD2
~bÞ, (25)

_~r ¼ D2~a�D3
~b, (26)

_~a ¼ ~q;
_~b ¼~r, (27,28)

where

~K ¼ ðK0;K1;K2; . . .Þ; D1 ¼ diagðaþ bn4Þ; D2 ¼ diagðanþ bn3Þ; D3 ¼ diagðan2 þ bn2Þ.

Initial conditions at t ¼ 0 are

c ¼ 0, (29)

qn ¼ 0; rn ¼ 0; an ¼ 0; bn ¼ 0; na1, (30)

qn ¼ �1; rn ¼ �1; an ¼ 0; bn ¼ 0; n ¼ 1. (31)

The system of equations (25)–(31) is solved numerically using the fourth-order Runge–Kutta method with uniform

step Dt. The integrals in Eqs. (20)–(22) are evaluated numerically using the parabolic approximation.



ARTICLE IN PRESS
T.I. Khabakhpasheva / Journal of Fluids and Structures 25 (2009) 431–444 437
7. Numerical results and discussion

The following shell characteristics are considered:
(i)
 radial deflection of the shell wðy; tÞ, Eq. (16);

(ii)
 full deflection of the shell, including both normal and radial deflections

W ðx; tÞ ¼ w cos yþ v sin y;
(iii)
 full form of the shell, including both normal and radial deflections

f ðx; tÞ ¼ R�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 � x2

p
þW ðyðxÞÞ;
(iv)
 circle bending moment

M ¼ �
Eh30

12ð1� n2Þ
k,

which is proportional to the curvature

k ¼ �
1

R2

qv

qy
þ

q2w

qy2

� �
;

(v)
 strains at the outer fibre

� ¼
12M

Eh0
;

(vi)
 specific circle normal force

N ¼ �
Eh0

1� n2
�cl ,

which is proportional to the strain at a central line in the normal direction

�cl ¼
1

R

qv

qy
� w

� �
.

A first series of numerical simulations are performed for the conditions of the experiment reported by Shibue et al.

(1994) in their investigation of the impact of a cylindrical shell in deep water. These experimental conditions are also

considered by Ionina and Korobkin (1999). A cylindrical shell with outer radius R ¼ 0:156m and thickness h0 ¼

5:1mm is considered. The shell, made of steel with E ¼ 206� 109 Pa, n ¼ 0:3, r0 ¼ 8067 kg=m3, falls with initial impact

velocity V ¼ 3:5m=s, onto a layer of water (density r ¼ 1000kg=m3Þ. Results of calculations, obtained using 15 modes,

are reported for several values of the thickness of the water layer between h0 ¼ 10 and 100mm. A nondimensional time

step Dt ¼ 5� 10�4, which corresponds to ðh0=100mmÞ � 1:5� 10�4 s in dimensional variables, is chosen. The time unit

is a millisecond for every figure.

Fig. 4 shows the evolution of the strain (in microstrains) at the lower point ðy ¼ 0Þ for h0 ¼ 100mm. The

results shown in Fig. 4 are in general agreement with both the results obtained in Ionina and Korobkin (1999) and the

experimental results reported in Shibue et al. (1994). It should be noticed that the present results are obtained within the

framework of a shallow water model, whereas the results of Ionina and Korobkin (1999) correspond to a deep water

model and the experimental results reported by Shibue et al. (1994) are obtained for a finite water layer. Better

agreement among these distinct results can hardly be expected. Furthermore, the shallow water model accurately

predicts the maximum strain, and the instant of time for which the maximum strain is achieved, even if the use of the

shallow water model may be questioned for the ratio between the shell radius and the thickness of the water layer

considered here. Good agreement was also found for the maximum strain and related instants of time at the points that

correspond to the angles 101, 201 and 301.

These results allow us to conclude that only a thin layer of the water is caused to flow at the initial stage of the impact

of a flat body. The liquid flow below some value of the depth continues to be at rest.
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Fig. 4. Comparison of the evolutions of the strain at the point y ¼ 0 predicted by the present study for finite water depth (solid thick

line) and for deep water by Ionina and Korobkin (1999) (thin line), and observed experimentally by Shibue et al. (1994) (dotted line).

Fig. 5. Evolution of the strain at the points y ¼ 0�, 10�, 20� and 30� for water depths h0 ¼ 25; 50; 75 and 100mm.

T.I. Khabakhpasheva / Journal of Fluids and Structures 25 (2009) 431–444438
It should be noticed that Korobkin’s approach is based on two main geometrical assumptions:
(a)
 The liquid flow beneath the body is described by the shallow water model, in which only the horizontal component

of the liquid velocity is taken into account.
(b)
 In the turnover region (region II), the body surface is assumed to be flat.
Neither of these assumptions is valid near the edges of the contact region for a shell of radius 150mm that penetrates

a liquid layer at a depth greater than 10mm (for which one has c0X70mm and yX30�). For the considered case of the
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steel shell impact, these conditions yield t0X4ms. Nevertheless, agreement for the evolution of strain can be observed in

Fig. 4. This agreement provides an indirect confirmation of the usefulness of the present approach, even for values of

parameters for which the validity of the model may be questioned.

Fig. 5 shows the evolution of the strains obtained for water layer thicknesses equal to h0 ¼ 25; 50; 75 and 100mm and

for several points of the shell that correspond to angles y ¼ 0�, 10�, 20� and 30�. The time histories for the four

thicknesses of the water layer and the four points considered here are similar in that local maximums and minimums

occur at the same instants of time. However, the absolute values of the maximal strain are different, and are larger for

thinner layers of water.

In this high-rigidity case, full deflection of the shell corresponds to straight-line motion of the shell, without

visible change of the shell form. The strain along a central line in the normal direction was found to be negligible

(less than 0.06 microstrain) during the impact.

Fig. 6, 8 and 9 show results of calculations, for an impact velocity V ¼ 3:5m=s and a water layer thickness

h0 ¼ 25mm, for different values of the thickness of the cylindrical steel shell, which varies between h0 ¼ 1:25 and

5:1mm. Calculations are performed using 15 modes and a nondimensional time step taken as Dt ¼ 5� 10�4, which

corresponds to 0:75� 10�5 s.

Fig. 6(a) shows the evolution of the immersion depth of the lowest point ðy ¼ 0�Þ for several values of the shell

thickness. The thin straight line indicates the immersion that corresponds to impact velocity V ¼ 3:5m=s without water.
The velocity of immersion can be seen to be smaller for thinner shells. Fig. 6(b) shows the form of the shell at the lowest
Fig. 6. Position of the point of the shell y ¼ 0� as a function of time (a) and shape of the shell at the instant of time t� when the shell

reaches the bottom (b) for different values of the shell thickness.
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point, when the shell reaches the bottom of the layer of water. The line for h0 ¼ 5:1mm is very close to a circle.

However, thinner shells are more flat. It should be noted that the instants of time t� at which the shell reaches the

bottom are different for the different cases considered in this figure.

A shell with thickness smaller than 1.25mm does not reach the bottom of the water layer. As the shell enters the

water, the shape of the lower portion of the shell flattens, the velocity of immersion is reduced, and at some instant of

time the size of the wetted region is also reduced (see Fig. 7). Within the present theory, the matching conditions for the

flow subregion II imply that the velocity of wetting must be positive. Calculations cannot be pursued if the size of the

contact region begins to decrease—a behaviour that corresponds to exit or ‘‘reflection’’ of the shell from the water layer,

before the shell reaches the bottom. Similar results were obtained for an aluminium shell with E ¼ 71� 109 Pa,

r0 ¼ 2700kg=m3, outer radius R ¼ 0:156m, a shell thickness smaller than 2.5mm and a water depth smaller than

25mm.
Fig. 7. Sketch illustrating the reflection for the case of the steel shell.

Fig. 8. Distribution of the horizontal component of the liquid velocity beneath the shell at selected time instants. The extent of the

wetted region for every time instant is indicated by circles.

Fig. 9. Time history of the pressure at the point y ¼ 0� for a shell thickness: —–, h0 ¼ 1:25 mm; - - -, h0 ¼ 5:1mm.
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The evolution of the horizontal component of the liquid velocity beneath the shell is depicted in Fig. 8 for several

instants of time. Each time is associated with a particular contact region, x ¼ c0, as indicated by a cycle. The lines

correspond to times in the range 0:018msot0o8:65ms, selected to show the evolution of the velocity as clearly as

possible. The horizontal fluid velocity increases sharply as the thickness of the liquid layer becomes smaller. This figure

corresponds to a shell thickness h0 ¼ 5:1mm. Calculations for other values of the steel shell thickness yield a similar

variation of the liquid velocity with respect to time.

Fig. 9 depicts the time history of the pressure at the lowest point of the shell ðy ¼ 0�Þ. The solid and dashed lines

correspond to a shell thickness h0 ¼ 1:25 and 5:1mm, respectively. The pressure varies very rapidly with time, although

the pressure distribution along the wetted region is smooth at every instant of time. The pressure is higher for thicker

shells. It is interesting that the pressure at the first instant of time pð0; 0Þ is similar in both cases and approximately equal

to 7� 104 Pa. This pressure is about half the pressure for a rigid body, which is given by the expression

pðx; tÞ � 3rV2R0=h0; see Korobkin (1995).

Another series of numerical simulations are performed for an elastic shell made of glass fibre plastic with

E ¼ 3� 109 Pa, n ¼ 0:3 and r0 ¼ 1180kg=m3. The outer radius of the cylinder is R ¼ 0:156m and the thickness of the

cylinder is h0 ¼ 1mm. Due to the high flexibility of this shell, it is necessary to use a greater number of modes than for

the steel shell. Thirty modes are used for the present calculations. The nondimensional time step is taken as Dt ¼ 10�4.
Fig. 10. (a) Evolution of the form of the shell and (b) of the horizontal component of the liquid velocity for the glass fibre plastic shell

at selected time instants. V ¼ 3:5m=s, h0 ¼ 10mm.
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The results depicted in Fig. 10 correspond to the thickness of the water layer h0 ¼ 10mm and the impact velocity

V ¼ 3:5m=s. Fig. 10(a) shows the evolution of the shell form, and Fig. 10(b) shows the horizontal component of the

liquid velocity beneath the shell. The circles indicate the variation of the size of the contact region c0 with respect to

time, as in Fig. 8. It can be seen that the shell does not enter the water and that the shell form flattens at the contact of

water, which remains flat. The horizontal velocity of the water is quite high because the thickness of the water layer is

small. It is interesting that the liquid velocity is negative, which means that the liquid moves toward the axis of

symmetry of the shell, for some wetted regions and some instants of time. It should be noticed that the curves with

c0 � 0:09 and 0:115m in the figure actually do not satisfy the second geometrical assumption. These numerical results

indicate the behaviour of the liquid flow and shape of the shell during the end of the impact process only.

Figs. 11–13 correspond to ‘‘soft’’ impact conditions; specifically, the thickness of the water layer is h0 ¼ 10mm and

the impact velocity is V ¼ 1:5m=s. The shell thickness is h0 ¼ 2mm. A dimensionless time step Dt ¼ 10�5 was used.

Calculations were performed using both 35 modes and 50 modes to confirm convergence of the procedure. Fig. 11(a)

shows the evolution of the shell form, and Fig. 11(b) depicts the horizontal component of the liquid velocity beneath the

shell, again plotted as in Fig. 8. In this case, the shell is finally submerged in the water layer and reaches the bottom of

the water layer. The shell does not touch the bottom at the central point of the contact region ðy ¼ 0�Þ, but at a point
Fig. 12. Evolution of the size of the contact region as a function of time.

Fig. 11. (a) Evolution of the form of the shell and (b) of the horizontal component of the liquid velocity for the glass fibre plastic shell

at selected time instants. V ¼ 1m=s, h0 ¼ 25mm.
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Fig. 13. Evolution of the position of the central point y ¼ 0� as a function of time (thick solid line) and lowest point of the shell

(thin line).

Fig. 14. Sketch for the illustration of the ‘‘reflection’’ for the case of the glass fibre plastic shell.

T.I. Khabakhpasheva / Journal of Fluids and Structures 25 (2009) 431–444 443
with y� � 0:16�. The effect of ‘‘fluid capture’’ occurs in this case. This behaviour reflects the influence of high modes

(modes with n ¼ 18; 19; 20) and therefore cannot be observed if only a small number of modes is used. The liquid

velocity reaches its maximum value near the same point y�.
Fig. 12 depicts the variation of the size c0 of the contact region as a function of time. Initially, c0ðtÞ varies in

accordance with the parabolic law, but c0 increases rapidly after some instant t�. The position of the central point

ðy ¼ 0�Þ as a function of time is indicated in Fig. 13 by a thick solid line. The dashed line in this figure corresponds to

immersion with constant velocity V ¼ 1:5m=s and the thin line indicates depth of maximal submergence of the shell.

Initially, the shell penetrates the liquid layer with velocity equal to approximately half the impact velocity; however, the

velocity of the center point and the maximum submergence velocity increase rapidly after the time instant t�.

If the impact velocity is smaller than 0.75m/s, a fairly complicated sequence of events takes place (see Fig. 14). At

first, the shell enters the liquid layer very slowly and the shape of the lower part of the shell flattens. Subsequently, the

shape of the shell changes rapidly, and the shell moves toward the bottom of the water layer at high velocity. Then the

numerical calculations show that the shell does not reach the bottom, because the lowest point of the shell moves

upward and local maxima of the shell form occur at the point y ¼ 0. Finally, the size of the contact region decreases.

This behaviour indicates that the shell moves upward, and is ‘‘reflected’’ before reaching the bottom.
8. Conclusion

The impact of a thin elastic cylindrical shell on a thin layer of water was studied as a coupled hydroelasticity problem

in which the flow of water beneath the shell and the shell deformations are determined simultaneously. The elastic

deformation of the shell was analysed using the normal modes method. The liquid flow was analysed using Korobkin’s

approach, via the method of matched asymptotic expansions. This fluid–structure coupled analysis leads to a system of

nonlinear differential equations for the evolution of principal coordinates of the shell shape and the fluid hydrodynamic

pressure. The solution of this evolution system provides both the deformation and stresses for the shell, the size of the

contact region between the shell and the liquid, and the liquid flow.

A main result of the analysis is that shallow-water impact is more dangerous than deep-water impact because

stresses and the deformation of the shell increase as the thickness of the water layer decreases. But starting from some
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relatively large depth of the water, maximal values of the stresses and deflections remain constant with increasing water

depth.

In the case of a glass-fibre plastic shell, three distinct regimes were found. For a high impact velocity and a thin layer

of water, the lower part of the shell flattens and the shell does not enter the water. For a moderate impact velocity, the

lower part of the shell initially flattens. This initial stage is followed by high vibratory motions of the shell, which moves

rapidly downward. The shell may touch the bottom of the layer of water at a point located off the centerline, rather

than at the central point. For a low impact velocity and relatively deep water, the rapid downward motion of the shell is

followed by a rapid increase of the size of the shell-liquid contact region and upward motion of the shell’s central point.

These regimes cannot be found if only the first few modes of the vibratory motions of the shell are considered.

These regimes were not found for a (relatively rigid) steel shell. For a thin steel shell and a thin layer of water, the size

of the shell-water contact region was found to decrease, which indicates that the shell moves upward before reaching

bottom.
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